Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guang Chen,* Yu-Xi Sun, Min Sun and Wei Qi

Department of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China

Correspondence e-mail:
qufuchenguang@163.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.047$
$w R$ factor $=0.123$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

[N, N^{\prime}-Bis(2-oxido-1-naphthylmethylene)-propane-1,3-diamine]copper(II)

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$, is a centrosymmetric mononuclear copper(II) complex. The $\mathrm{Cu}^{\mathrm{II}}$ atom and central C atom of the propane linkage lie on a mirror plane. The $\mathrm{Cu}^{\text {II }}$ ion is coordinated by two N atoms and two O atoms from a bis-Schiff base ligand in a slightly distorted square-planar geometry.

Comment

Transition metal complexes are very important in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). As an extension of work on the structural characterization of copper(II) complexes, the title compound, (I), is reported here.

Complex (I) is a mononuclear copper(II) complex (Fig. 1). The asymmetric unit contains one half of the complex, with the other half being generated by crystallographic mirror symmetry; atoms Cu 1 and C 13 lie on the mirror plane. The central $\mathrm{Cu}^{\text {II }}$ ion is coordinated by two O atoms and two N atoms of the bis-Schiff base ligand. This $\mathrm{CuO}_{2} \mathrm{~N}_{2}$ coordination has a slightly distorted square-planar geometry. The Cu atom is 0.016 (3) \AA out of the mean plane of the four donor atoms. The $\mathrm{Cu}-\mathrm{O}$ bond length [1.849 (3) \AA; Table 1] is shorter than the value of 1.880 (2) \AA observed in another Schiff base copper(II) complex (Burgess et al., 2001). The $\mathrm{Cu}-\mathrm{N}$ bond [1.875 (3) A] is much shorter than the value of 2.009 (3) \AA observed in the same complex. Both trans angles in the square plane of (I) are 173.63 (13) ${ }^{\circ}$, indicating a slightly distorted square-planar configuration of atom Cu 1 . The dihedral angle between the two naphthalene ring systems is $52.8(5)^{\circ}$.

Experimental

1,3-Diaminopropane ($0.2 \mathrm{mmol}, 15.8 \mathrm{mg}$) and 2-hydroxy-1-naphthaldehyde ($0.4 \mathrm{mmol}, 68.9 \mathrm{mg}$) were dissolved in EtOH (15 ml). The mixture was stirred for 30 min to give a clear yellow solution. To this solution was added an EtOH solution $(15 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$.$2 \mathrm{H}_{2} \mathrm{O}(0.2 \mathrm{mmol}, 43.6 \mathrm{mg})$, with stirring. The mixture was stirred for a

Received 22 September 2004 Accepted 27 September 2004 Online 9 October 2004
further 30 min and filtered. The filtrate was allowed to stand at room temperature in air for 11 d , yielding blue block-shaped crystals of (I).

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$
$M_{r}=443.97$
Orthorhombic, Cmc_{1}
$a=30.614$ (6) A
$b=8.4578$ (17) £
$c=7.7462$ (15) \AA
$V=2005.7(7) \AA^{3}$
$Z=4$
$D_{x}=1.470 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker SMART CCD area-detector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.746, T_{\text {max }}=0.825$
5705 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.124$
$S=1.01$
2074 reflections
140 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 2010 reflections
$\theta=2.5-22.6^{\circ}$
$\mu=1.11 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, blue
$0.28 \times 0.25 \times 0.18 \mathrm{~mm}$

2074 independent reflections
1845 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-38 \rightarrow 33$
$k=-10 \rightarrow 10$
$l=-9 \rightarrow 9$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0826 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.53$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$
Absolute structure: Flack (1983);
932 Friedel pairs
Flack parameter $=0.11$ (2)

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 1$	$1.849(3)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$1.875(3)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{O} 1$	$82.64(16)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$91.06(13)$
$\mathrm{O1}^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$173.63(13)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$95.2(2)$

Symmetry code: (i) $1-x, y, z$.
All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.93-0.97 \AA and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The author thanks Qufu Normal University for research grant No. xj03005.

References

Bhatia, S. C., Bindlish, J. M., Saini, A. R. \& Jain, P. C. (1981). J. Chem. Soc. Dalton Trans. pp. 1773-1779.
Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Burgess, J., Fawcett, J., Palma, V. \& Gilani, S. R. (2001). Acta Cryst. C57, 277280.

Costamagna, J., Vargas, J., Latorre, R., Alvarado, A. \& Mena, G. (1992). Coord. Chem. Rev. 119, 67-88.

Figure 1
The structure of (I), showing the atomic numbering for the contents of the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms by $1-x, y, z$.

Figure 2
Part of the crystal packing of (I), viewed along the c axis.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

